3.7.13 \(\int \frac {(d+e x)^{3/2}}{a-c x^2} \, dx\) [613]

3.7.13.1 Optimal result
3.7.13.2 Mathematica [A] (verified)
3.7.13.3 Rubi [A] (verified)
3.7.13.4 Maple [A] (verified)
3.7.13.5 Fricas [B] (verification not implemented)
3.7.13.6 Sympy [F]
3.7.13.7 Maxima [F]
3.7.13.8 Giac [B] (verification not implemented)
3.7.13.9 Mupad [B] (verification not implemented)

3.7.13.1 Optimal result

Integrand size = 20, antiderivative size = 149 \[ \int \frac {(d+e x)^{3/2}}{a-c x^2} \, dx=-\frac {2 e \sqrt {d+e x}}{c}-\frac {\left (\sqrt {c} d-\sqrt {a} e\right )^{3/2} \text {arctanh}\left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {a} e}}\right )}{\sqrt {a} c^{5/4}}+\frac {\left (\sqrt {c} d+\sqrt {a} e\right )^{3/2} \text {arctanh}\left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {a} e}}\right )}{\sqrt {a} c^{5/4}} \]

output
-arctanh(c^(1/4)*(e*x+d)^(1/2)/(-e*a^(1/2)+d*c^(1/2))^(1/2))*(-e*a^(1/2)+d 
*c^(1/2))^(3/2)/c^(5/4)/a^(1/2)+arctanh(c^(1/4)*(e*x+d)^(1/2)/(e*a^(1/2)+d 
*c^(1/2))^(1/2))*(e*a^(1/2)+d*c^(1/2))^(3/2)/c^(5/4)/a^(1/2)-2*e*(e*x+d)^( 
1/2)/c
 
3.7.13.2 Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.40 \[ \int \frac {(d+e x)^{3/2}}{a-c x^2} \, dx=\frac {-2 e \sqrt {d+e x}+\frac {\left (\sqrt {c} d+\sqrt {a} e\right )^2 \arctan \left (\frac {\sqrt {-c d-\sqrt {a} \sqrt {c} e} \sqrt {d+e x}}{\sqrt {c} d+\sqrt {a} e}\right )}{\sqrt {a} \sqrt {-c d-\sqrt {a} \sqrt {c} e}}-\frac {\left (\sqrt {c} d-\sqrt {a} e\right )^2 \arctan \left (\frac {\sqrt {-c d+\sqrt {a} \sqrt {c} e} \sqrt {d+e x}}{\sqrt {c} d-\sqrt {a} e}\right )}{\sqrt {a} \sqrt {-c d+\sqrt {a} \sqrt {c} e}}}{c} \]

input
Integrate[(d + e*x)^(3/2)/(a - c*x^2),x]
 
output
(-2*e*Sqrt[d + e*x] + ((Sqrt[c]*d + Sqrt[a]*e)^2*ArcTan[(Sqrt[-(c*d) - Sqr 
t[a]*Sqrt[c]*e]*Sqrt[d + e*x])/(Sqrt[c]*d + Sqrt[a]*e)])/(Sqrt[a]*Sqrt[-(c 
*d) - Sqrt[a]*Sqrt[c]*e]) - ((Sqrt[c]*d - Sqrt[a]*e)^2*ArcTan[(Sqrt[-(c*d) 
 + Sqrt[a]*Sqrt[c]*e]*Sqrt[d + e*x])/(Sqrt[c]*d - Sqrt[a]*e)])/(Sqrt[a]*Sq 
rt[-(c*d) + Sqrt[a]*Sqrt[c]*e]))/c
 
3.7.13.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {481, 25, 654, 27, 1480, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^{3/2}}{a-c x^2} \, dx\)

\(\Big \downarrow \) 481

\(\displaystyle -\frac {\int -\frac {c d^2+2 c e x d+a e^2}{\sqrt {d+e x} \left (a-c x^2\right )}dx}{c}-\frac {2 e \sqrt {d+e x}}{c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {c d^2+2 c e x d+a e^2}{\sqrt {d+e x} \left (a-c x^2\right )}dx}{c}-\frac {2 e \sqrt {d+e x}}{c}\)

\(\Big \downarrow \) 654

\(\displaystyle \frac {2 \int \frac {e \left (c d^2-2 c (d+e x) d-a e^2\right )}{c d^2-2 c (d+e x) d-a e^2+c (d+e x)^2}d\sqrt {d+e x}}{c}-\frac {2 e \sqrt {d+e x}}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 e \int \frac {c d^2-2 c (d+e x) d-a e^2}{c d^2-2 c (d+e x) d-a e^2+c (d+e x)^2}d\sqrt {d+e x}}{c}-\frac {2 e \sqrt {d+e x}}{c}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {2 e \left (\frac {\sqrt {c} \left (\sqrt {c} d-\sqrt {a} e\right )^2 \int \frac {1}{c (d+e x)-\sqrt {c} \left (\sqrt {c} d-\sqrt {a} e\right )}d\sqrt {d+e x}}{2 \sqrt {a} e}-\frac {\sqrt {c} \left (\sqrt {a} e+\sqrt {c} d\right )^2 \int \frac {1}{c (d+e x)-\sqrt {c} \left (\sqrt {c} d+\sqrt {a} e\right )}d\sqrt {d+e x}}{2 \sqrt {a} e}\right )}{c}-\frac {2 e \sqrt {d+e x}}{c}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 e \left (\frac {\left (\sqrt {a} e+\sqrt {c} d\right )^{3/2} \text {arctanh}\left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt {\sqrt {a} e+\sqrt {c} d}}\right )}{2 \sqrt {a} \sqrt [4]{c} e}-\frac {\left (\sqrt {c} d-\sqrt {a} e\right )^{3/2} \text {arctanh}\left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {a} e}}\right )}{2 \sqrt {a} \sqrt [4]{c} e}\right )}{c}-\frac {2 e \sqrt {d+e x}}{c}\)

input
Int[(d + e*x)^(3/2)/(a - c*x^2),x]
 
output
(-2*e*Sqrt[d + e*x])/c + (2*e*(-1/2*((Sqrt[c]*d - Sqrt[a]*e)^(3/2)*ArcTanh 
[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[a]*e]])/(Sqrt[a]*c^(1/4)*e) 
 + ((Sqrt[c]*d + Sqrt[a]*e)^(3/2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqr 
t[c]*d + Sqrt[a]*e]])/(2*Sqrt[a]*c^(1/4)*e)))/c
 

3.7.13.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 481
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d*((c 
 + d*x)^(n - 1)/(b*(n - 1))), x] + Simp[1/b   Int[(c + d*x)^(n - 2)*(Simp[b 
*c^2 - a*d^2 + 2*b*c*d*x, x]/(a + b*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] 
 && GtQ[n, 1]
 

rule 654
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), 
x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d* 
x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 
3.7.13.4 Maple [A] (verified)

Time = 2.05 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.13

method result size
derivativedivides \(-2 e \left (\frac {\sqrt {e x +d}}{c}+\frac {\left (-e^{2} a -c \,d^{2}+2 \sqrt {a c \,e^{2}}\, d \right ) \arctan \left (\frac {c \sqrt {e x +d}}{\sqrt {\left (-c d +\sqrt {a c \,e^{2}}\right ) c}}\right )}{2 \sqrt {a c \,e^{2}}\, \sqrt {\left (-c d +\sqrt {a c \,e^{2}}\right ) c}}-\frac {\left (e^{2} a +c \,d^{2}+2 \sqrt {a c \,e^{2}}\, d \right ) \operatorname {arctanh}\left (\frac {c \sqrt {e x +d}}{\sqrt {\left (c d +\sqrt {a c \,e^{2}}\right ) c}}\right )}{2 \sqrt {a c \,e^{2}}\, \sqrt {\left (c d +\sqrt {a c \,e^{2}}\right ) c}}\right )\) \(168\)
pseudoelliptic \(-e \left (\frac {2 \sqrt {e x +d}}{c}+\frac {\left (-e^{2} a -c \,d^{2}+2 \sqrt {a c \,e^{2}}\, d \right ) \arctan \left (\frac {c \sqrt {e x +d}}{\sqrt {\left (-c d +\sqrt {a c \,e^{2}}\right ) c}}\right )}{\sqrt {a c \,e^{2}}\, \sqrt {\left (-c d +\sqrt {a c \,e^{2}}\right ) c}}-\frac {\left (e^{2} a +c \,d^{2}+2 \sqrt {a c \,e^{2}}\, d \right ) \operatorname {arctanh}\left (\frac {c \sqrt {e x +d}}{\sqrt {\left (c d +\sqrt {a c \,e^{2}}\right ) c}}\right )}{\sqrt {a c \,e^{2}}\, \sqrt {\left (c d +\sqrt {a c \,e^{2}}\right ) c}}\right )\) \(168\)
default \(2 e \left (-\frac {\sqrt {e x +d}}{c}+\frac {\left (e^{2} a +c \,d^{2}-2 \sqrt {a c \,e^{2}}\, d \right ) \arctan \left (\frac {c \sqrt {e x +d}}{\sqrt {\left (-c d +\sqrt {a c \,e^{2}}\right ) c}}\right )}{2 \sqrt {a c \,e^{2}}\, \sqrt {\left (-c d +\sqrt {a c \,e^{2}}\right ) c}}-\frac {\left (-e^{2} a -c \,d^{2}-2 \sqrt {a c \,e^{2}}\, d \right ) \operatorname {arctanh}\left (\frac {c \sqrt {e x +d}}{\sqrt {\left (c d +\sqrt {a c \,e^{2}}\right ) c}}\right )}{2 \sqrt {a c \,e^{2}}\, \sqrt {\left (c d +\sqrt {a c \,e^{2}}\right ) c}}\right )\) \(169\)
risch \(-\frac {2 e \sqrt {e x +d}}{c}-2 e \left (\frac {\left (-e^{2} a -c \,d^{2}+2 \sqrt {a c \,e^{2}}\, d \right ) \arctan \left (\frac {c \sqrt {e x +d}}{\sqrt {\left (-c d +\sqrt {a c \,e^{2}}\right ) c}}\right )}{2 \sqrt {a c \,e^{2}}\, \sqrt {\left (-c d +\sqrt {a c \,e^{2}}\right ) c}}-\frac {\left (e^{2} a +c \,d^{2}+2 \sqrt {a c \,e^{2}}\, d \right ) \operatorname {arctanh}\left (\frac {c \sqrt {e x +d}}{\sqrt {\left (c d +\sqrt {a c \,e^{2}}\right ) c}}\right )}{2 \sqrt {a c \,e^{2}}\, \sqrt {\left (c d +\sqrt {a c \,e^{2}}\right ) c}}\right )\) \(171\)

input
int((e*x+d)^(3/2)/(-c*x^2+a),x,method=_RETURNVERBOSE)
 
output
-2*e*(1/c*(e*x+d)^(1/2)+1/2*(-e^2*a-c*d^2+2*(a*c*e^2)^(1/2)*d)/(a*c*e^2)^( 
1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan(c*(e*x+d)^(1/2)/((-c*d+(a*c*e 
^2)^(1/2))*c)^(1/2))-1/2*(e^2*a+c*d^2+2*(a*c*e^2)^(1/2)*d)/(a*c*e^2)^(1/2) 
/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh(c*(e*x+d)^(1/2)/((c*d+(a*c*e^2)^( 
1/2))*c)^(1/2)))
 
3.7.13.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 974 vs. \(2 (107) = 214\).

Time = 0.31 (sec) , antiderivative size = 974, normalized size of antiderivative = 6.54 \[ \int \frac {(d+e x)^{3/2}}{a-c x^2} \, dx=\frac {c \sqrt {\frac {c d^{3} + 3 \, a d e^{2} + a c^{2} \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}}{a c^{2}}} \log \left (-{\left (3 \, c^{2} d^{4} e - 2 \, a c d^{2} e^{3} - a^{2} e^{5}\right )} \sqrt {e x + d} + {\left (3 \, a c^{2} d^{2} e^{2} + a^{2} c e^{4} - a c^{4} d \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}\right )} \sqrt {\frac {c d^{3} + 3 \, a d e^{2} + a c^{2} \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}}{a c^{2}}}\right ) - c \sqrt {\frac {c d^{3} + 3 \, a d e^{2} + a c^{2} \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}}{a c^{2}}} \log \left (-{\left (3 \, c^{2} d^{4} e - 2 \, a c d^{2} e^{3} - a^{2} e^{5}\right )} \sqrt {e x + d} - {\left (3 \, a c^{2} d^{2} e^{2} + a^{2} c e^{4} - a c^{4} d \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}\right )} \sqrt {\frac {c d^{3} + 3 \, a d e^{2} + a c^{2} \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}}{a c^{2}}}\right ) + c \sqrt {\frac {c d^{3} + 3 \, a d e^{2} - a c^{2} \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}}{a c^{2}}} \log \left (-{\left (3 \, c^{2} d^{4} e - 2 \, a c d^{2} e^{3} - a^{2} e^{5}\right )} \sqrt {e x + d} + {\left (3 \, a c^{2} d^{2} e^{2} + a^{2} c e^{4} + a c^{4} d \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}\right )} \sqrt {\frac {c d^{3} + 3 \, a d e^{2} - a c^{2} \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}}{a c^{2}}}\right ) - c \sqrt {\frac {c d^{3} + 3 \, a d e^{2} - a c^{2} \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}}{a c^{2}}} \log \left (-{\left (3 \, c^{2} d^{4} e - 2 \, a c d^{2} e^{3} - a^{2} e^{5}\right )} \sqrt {e x + d} - {\left (3 \, a c^{2} d^{2} e^{2} + a^{2} c e^{4} + a c^{4} d \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}\right )} \sqrt {\frac {c d^{3} + 3 \, a d e^{2} - a c^{2} \sqrt {\frac {9 \, c^{2} d^{4} e^{2} + 6 \, a c d^{2} e^{4} + a^{2} e^{6}}{a c^{5}}}}{a c^{2}}}\right ) - 4 \, \sqrt {e x + d} e}{2 \, c} \]

input
integrate((e*x+d)^(3/2)/(-c*x^2+a),x, algorithm="fricas")
 
output
1/2*(c*sqrt((c*d^3 + 3*a*d*e^2 + a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 
 + a^2*e^6)/(a*c^5)))/(a*c^2))*log(-(3*c^2*d^4*e - 2*a*c*d^2*e^3 - a^2*e^5 
)*sqrt(e*x + d) + (3*a*c^2*d^2*e^2 + a^2*c*e^4 - a*c^4*d*sqrt((9*c^2*d^4*e 
^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))*sqrt((c*d^3 + 3*a*d*e^2 + a*c^2*sq 
rt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^2))) - c*sqrt( 
(c*d^3 + 3*a*d*e^2 + a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/ 
(a*c^5)))/(a*c^2))*log(-(3*c^2*d^4*e - 2*a*c*d^2*e^3 - a^2*e^5)*sqrt(e*x + 
 d) - (3*a*c^2*d^2*e^2 + a^2*c*e^4 - a*c^4*d*sqrt((9*c^2*d^4*e^2 + 6*a*c*d 
^2*e^4 + a^2*e^6)/(a*c^5)))*sqrt((c*d^3 + 3*a*d*e^2 + a*c^2*sqrt((9*c^2*d^ 
4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^2))) + c*sqrt((c*d^3 + 3*a 
*d*e^2 - a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a 
*c^2))*log(-(3*c^2*d^4*e - 2*a*c*d^2*e^3 - a^2*e^5)*sqrt(e*x + d) + (3*a*c 
^2*d^2*e^2 + a^2*c*e^4 + a*c^4*d*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2 
*e^6)/(a*c^5)))*sqrt((c*d^3 + 3*a*d*e^2 - a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a* 
c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^2))) - c*sqrt((c*d^3 + 3*a*d*e^2 - a*c 
^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^2))*log(- 
(3*c^2*d^4*e - 2*a*c*d^2*e^3 - a^2*e^5)*sqrt(e*x + d) - (3*a*c^2*d^2*e^2 + 
 a^2*c*e^4 + a*c^4*d*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5 
)))*sqrt((c*d^3 + 3*a*d*e^2 - a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + 
a^2*e^6)/(a*c^5)))/(a*c^2))) - 4*sqrt(e*x + d)*e)/c
 
3.7.13.6 Sympy [F]

\[ \int \frac {(d+e x)^{3/2}}{a-c x^2} \, dx=- \int \frac {d \sqrt {d + e x}}{- a + c x^{2}}\, dx - \int \frac {e x \sqrt {d + e x}}{- a + c x^{2}}\, dx \]

input
integrate((e*x+d)**(3/2)/(-c*x**2+a),x)
 
output
-Integral(d*sqrt(d + e*x)/(-a + c*x**2), x) - Integral(e*x*sqrt(d + e*x)/( 
-a + c*x**2), x)
 
3.7.13.7 Maxima [F]

\[ \int \frac {(d+e x)^{3/2}}{a-c x^2} \, dx=\int { -\frac {{\left (e x + d\right )}^{\frac {3}{2}}}{c x^{2} - a} \,d x } \]

input
integrate((e*x+d)^(3/2)/(-c*x^2+a),x, algorithm="maxima")
 
output
-integrate((e*x + d)^(3/2)/(c*x^2 - a), x)
 
3.7.13.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 314 vs. \(2 (107) = 214\).

Time = 0.32 (sec) , antiderivative size = 314, normalized size of antiderivative = 2.11 \[ \int \frac {(d+e x)^{3/2}}{a-c x^2} \, dx=-\frac {2 \, \sqrt {e x + d} e}{c} - \frac {{\left (\sqrt {a c} c^{3} d^{3} e - \sqrt {a c} a c^{2} d e^{3} + {\left (a c^{2} d^{2} e - a^{2} c e^{3}\right )} {\left | c \right |} {\left | e \right |}\right )} \arctan \left (\frac {\sqrt {e x + d}}{\sqrt {-\frac {c^{2} d + \sqrt {c^{4} d^{2} - {\left (c^{2} d^{2} - a c e^{2}\right )} c^{2}}}{c^{2}}}}\right )}{{\left (a c^{3} d - \sqrt {a c} a c^{2} e\right )} \sqrt {-c^{2} d - \sqrt {a c} c e} {\left | e \right |}} + \frac {{\left (\sqrt {a c} c^{3} d^{3} e - \sqrt {a c} a c^{2} d e^{3} - {\left (a c^{2} d^{2} e - a^{2} c e^{3}\right )} {\left | c \right |} {\left | e \right |}\right )} \arctan \left (\frac {\sqrt {e x + d}}{\sqrt {-\frac {c^{2} d - \sqrt {c^{4} d^{2} - {\left (c^{2} d^{2} - a c e^{2}\right )} c^{2}}}{c^{2}}}}\right )}{{\left (a c^{3} d + \sqrt {a c} a c^{2} e\right )} \sqrt {-c^{2} d + \sqrt {a c} c e} {\left | e \right |}} \]

input
integrate((e*x+d)^(3/2)/(-c*x^2+a),x, algorithm="giac")
 
output
-2*sqrt(e*x + d)*e/c - (sqrt(a*c)*c^3*d^3*e - sqrt(a*c)*a*c^2*d*e^3 + (a*c 
^2*d^2*e - a^2*c*e^3)*abs(c)*abs(e))*arctan(sqrt(e*x + d)/sqrt(-(c^2*d + s 
qrt(c^4*d^2 - (c^2*d^2 - a*c*e^2)*c^2))/c^2))/((a*c^3*d - sqrt(a*c)*a*c^2* 
e)*sqrt(-c^2*d - sqrt(a*c)*c*e)*abs(e)) + (sqrt(a*c)*c^3*d^3*e - sqrt(a*c) 
*a*c^2*d*e^3 - (a*c^2*d^2*e - a^2*c*e^3)*abs(c)*abs(e))*arctan(sqrt(e*x + 
d)/sqrt(-(c^2*d - sqrt(c^4*d^2 - (c^2*d^2 - a*c*e^2)*c^2))/c^2))/((a*c^3*d 
 + sqrt(a*c)*a*c^2*e)*sqrt(-c^2*d + sqrt(a*c)*c*e)*abs(e))
 
3.7.13.9 Mupad [B] (verification not implemented)

Time = 9.63 (sec) , antiderivative size = 1581, normalized size of antiderivative = 10.61 \[ \int \frac {(d+e x)^{3/2}}{a-c x^2} \, dx=\text {Too large to display} \]

input
int((d + e*x)^(3/2)/(a - c*x^2),x)
 
output
2*atanh((32*a^2*c*e^6*(d + e*x)^(1/2)*((3*d*e^2)/(4*c^2) + d^3/(4*a*c) - ( 
e^3*(a^3*c^5)^(1/2))/(4*a*c^5) - (3*d^2*e*(a^3*c^5)^(1/2))/(4*a^2*c^4))^(1 
/2))/(16*a^2*d*e^7 - 48*c^2*d^5*e^3 - (16*a*e^8*(a^3*c^5)^(1/2))/c^3 + 32* 
a*c*d^3*e^5 - (32*d^2*e^6*(a^3*c^5)^(1/2))/c^2 + (48*d^4*e^4*(a^3*c^5)^(1/ 
2))/(a*c)) - (32*d*e^5*(a^3*c^5)^(1/2)*(d + e*x)^(1/2)*((3*d*e^2)/(4*c^2) 
+ d^3/(4*a*c) - (e^3*(a^3*c^5)^(1/2))/(4*a*c^5) - (3*d^2*e*(a^3*c^5)^(1/2) 
)/(4*a^2*c^4))^(1/2))/(48*c^3*d^5*e^3 - 32*a*c^2*d^3*e^5 + (16*a*e^8*(a^3* 
c^5)^(1/2))/c^2 - 16*a^2*c*d*e^7 - (48*d^4*e^4*(a^3*c^5)^(1/2))/a + (32*d^ 
2*e^6*(a^3*c^5)^(1/2))/c) + (96*d^3*e^3*(a^3*c^5)^(1/2)*(d + e*x)^(1/2)*(( 
3*d*e^2)/(4*c^2) + d^3/(4*a*c) - (e^3*(a^3*c^5)^(1/2))/(4*a*c^5) - (3*d^2* 
e*(a^3*c^5)^(1/2))/(4*a^2*c^4))^(1/2))/(16*a^3*d*e^7 - 48*a*c^2*d^5*e^3 + 
32*a^2*c*d^3*e^5 - (16*a^2*e^8*(a^3*c^5)^(1/2))/c^3 + (48*d^4*e^4*(a^3*c^5 
)^(1/2))/c - (32*a*d^2*e^6*(a^3*c^5)^(1/2))/c^2) + (96*a*c^2*d^2*e^4*(d + 
e*x)^(1/2)*((3*d*e^2)/(4*c^2) + d^3/(4*a*c) - (e^3*(a^3*c^5)^(1/2))/(4*a*c 
^5) - (3*d^2*e*(a^3*c^5)^(1/2))/(4*a^2*c^4))^(1/2))/(16*a^2*d*e^7 - 48*c^2 
*d^5*e^3 - (16*a*e^8*(a^3*c^5)^(1/2))/c^3 + 32*a*c*d^3*e^5 - (32*d^2*e^6*( 
a^3*c^5)^(1/2))/c^2 + (48*d^4*e^4*(a^3*c^5)^(1/2))/(a*c)))*((a*c^4*d^3 - a 
*e^3*(a^3*c^5)^(1/2) + 3*a^2*c^3*d*e^2 - 3*c*d^2*e*(a^3*c^5)^(1/2))/(4*a^2 
*c^5))^(1/2) - 2*atanh((32*d*e^5*(a^3*c^5)^(1/2)*(d + e*x)^(1/2)*((3*d*e^2 
)/(4*c^2) + d^3/(4*a*c) + (e^3*(a^3*c^5)^(1/2))/(4*a*c^5) + (3*d^2*e*(a...